Муниципальное казенное общеобразовательное учреждение Квитокская средняя общеобразовательная школа № 1

«PACCMOTPEHO»

на заседании педсовета « 28» $0^{\frac{9}{2}}$ $20^{\frac{23}{3}}$ г. Протокол № 1

«УТВЕРЖДЕНО»

08 2023_Γ.

Приказ № <u>262</u> Директор *О*

((28))

О.В.Маслий

Дополнительная общеразвивающая программа технической направленности «Робототехника. Робот-манипулятор» (Точка Роста)

Возраст обучающихся: 11 – 15 лет

Срок реализации: 2 года

Составитель:

Кычакова Елена Витальевна, педагог дополнительного образования

Раздел I. Основные характеристики программы.

1.1. Пояснительная записка

Дополнительная общеразвивающая программа составлена в соответствии с Федеральным законом от 29.12.2012 № 273-ФЗ «Об образовании в Российской Федерации», Комплексной программой «Развитие образовательной робототехники и непрерывного ІТобразования в Российской Федерации», утвержденной «Агентством инновационного развития» №172-Р от 01.10.2014г. и направленной на создание условий для развития дополнительного образования детей в сфере научно-технического творчества, в том числе и в области робототехники, Приказом Минпросвещения России от 09.11.2018 года № 196 «Об утверждении Порядка организации и осуществления образовательной деятельности по дополнительным общеобразовательным программам»

Направленность программы.

Дополнительная общеразвивающая программа «Робототехника. Робот-манипулятор» имеет техническую направленность.

Актуальность программы.

Основным содержанием данной программы являются занятия по техническому моделированию, программированию роботаманипулятора.

Актуальность программы заключается в том, что она направлена на формирование творческой личности, живущей в современном мире. Rotrics DexArm - это робот манипулятор, 3D-принтер, лазерный гравер, ручка для рисования и другие подключаемые модули. Программа ориентирована на изучение основных физических принципов и базовых технических решений, лежащих в основе всех современных конструкций и устройств, на изучение языков программирования.

Концепция программы основана на необходимости разработки учебно-методического комплекса для изучения робототехники. Изучение робототехники имеет политехническую направленность, так как дети конструируют механизмы, решающие конкретные задачи. Технология наоснове робота-манипулятора Rotrics DexArm позволяет развивать навыки управления роботом у детей всех возрастов, поэтому школы, не имеющие политехнического профиля, остро испытывают потребность в реализации программ робототехники и любых других курсов, развивающих научно-техническое творчество детей.

Педагогическая целесообразность и уникальность программы заключаются в возможности объединить конструирование и программирование в одном курсе. Техническое творчество — мощный инструмент синтеза знаний, закладывающий прочные основы системного мышления. Таким образом, инженерное творчество и лабораторные исследования — многогранная деятельность, которая должна стать составной частью повседневной жизни каждого обучающегося.

Отличительные особенности программы, новизна.

Процесс освоения, конструирования и программирования роботов выходит за рамки целей и задач, которые стоят перед средней школой, поэтому программа является инновационным направлением в дополнительном образовании детей. Это позволяет ребенку освоить достаточно сложные понятия: алгоритм, цикл, ветвление, переменная. Робот-манипулятор Rotrics DexArm может стать одним из таких исполнителей. По сравнению с программированием виртуального исполнителя, Rotrics DexArm вносит в решение задач элементы исследования и эксперимента, повышает мотивацию учащихся, что будет положительно оценено педагогом.

На занятиях используются модули наборов серии Rotrics DexArm. Используя персональный компьютер или ноутбук с программным обеспечением, элементы из модулей, ученики могут составлять алгоритм управления манипулятором, программировать на выполнения

разнообразных задач.

В начале освоения программы ученики 5-7 классов, программируя Rotrics DexArm, изучают основы робототехники, программирования и микроэлектроники. Используют алгоритмический язык, встроенное программное обеспечение, выполняют простые задачи. Учащиеся 8-10 классов используют аппаратно-программные средства Arduino для построения и прототипирования простых систем, моделей и экспериментов в области электроники, автоматики, автоматизации процессов и робототехники.

Итогом освоения программы учениками является создание, написание программ, защита проектов.

Новизна программы заключается в том, что она составлена с учётом опыта работы с детьми возрастных групп 11-15 лет, а также предполагает использование актуальных инновационных методик обучения и современных образовательных конструкторов, соответствующих данной возрастной категории.

Адресат программы.

Программа «Робототехника. Робот-манипулятор» ориентирована на учащихся 5-10 классов, адресована обучающимся от 11 до 15 лет. Дети данного возраста способны выполнять задания по образцу, а так же после изучения модуля (блока, темы) выполнять творческое репродуктивное задание. Программа учитывает возрастные, психологические и индивидуальные особенности детей. Она построена по принципу от простого к сложному.

Объем и срок освоения программы.

Рабочая программа рассчитана на 2 года обучения, 72 часа.

Форма обучения: очная. Все занятия делятся на теоретические и практические. Теоретические занятия планируются с учетом возрастных, психологических и индивидуальных особенностей обучающихся.

Уровень программы: углубленный.

Режим занятий.

Продолжительность одного академического часа – 40 минут.

Общее количество часов в неделю – 1 час.

1.2 Цель и задачи программы

Цель: формирование основ алгоритмизации и программирования с использованием робота-манипулятора Rotrics DexArm; информационной компетентности личности, культуры исследовательской деятельности

Залачи:

- -научить программировать роботов на базе Rotrics DexArm;
- -научить работать в среде программирования;
- -развивать творческие способности и логическое мышление обучающихся;
- -развивать образное, техническое мышление и умение выразить свой замысел;
- -развивать умения работать по предложенным инструкциям по управлению моделей;
- -развивать умения творчески подходить к решению задачи; излагать мысли в четкой логической последовательности, отстаивать свою точку зрения, анализировать ситуацию и самостоятельно находить ответы на вопросы путем логических рассуждений;
- -получать навыки исследовательской, экспериментальной и проектной деятельности в области робототехники;
- -получить опыт работы в творческих группах.

1.3 Содержание программы

Учебный план

]	Количество	Формы		
№ п/п	Название темы	Всего	Теория	Практика	аттестации (контроля)	
	I	год обуче	ния			
1	Введение. Краткий обзор содержимого робототехнического комплекта	2	1	1	опрос	
2	Знакомство с Rotrics DexArm	12	6	6	практикум	
3	Программирование в блочной среде	12	6	6	практикум	

4	Основы микроэлектроники	4	2	2	инд. контроль
5	Подготовка проекта	2	-	2	инд. контроль
6	Защита проекта	2	-	2	инд. защита
	II	год обуче	ния		
1	Робототехника как прикладная наука. Rotrics DexArm	14	6	8	практикум
2	Программирование на языке Python	14	6	8	практикум
3	Основы микроэлектроники	4	2	2	инд. контроль
4	Подготовка проекта	2	-	2	инд. контроль
5	Защита проекта	2	-	2	инд. защита

Содержание учебного плана.

І год обучения

1. Введение (2 ч.)

Поколения роботов. История развития робототехники. Применение роботов. Развитие образовательной робототехники. Цели и задачи программы. Основы техники безопасности.

2. Знакомство с роботом Rotrics DexArm (12 ч.)

Poбот Rotrics DexArm. робот манипулятор, 3D-принтер, лазерный гравер и ручка для рисования. Возможности Rotrics DexArm Сменные модули 3D-принтер, Лазерный гравер. Управление манипулятором Rotrics DexArm с пульта. Рисование объектов манипулятором. Выполнение творческого проекта, рисование картины.

3 Программирование в блочной среде (12 ч.)

Установка программного обеспечения. Системные требования. Интерфейс. Самоучитель. Панель инструментов. Палитра команд. Рабочее поле. Окно подсказок. Панель конфигурации. Пульт управления роботом. Первые простые программы. Передача и запуск программ. Тестирование робота.

4 Основы микроэлектроники (4 ч.)

Знакомство с устройствами Arduino. Датчик касания (Touch Sensor, подключение и описание). Датчик звука (Sound Sensor, подключение и описание). Датчик освещенности (Light Sensor, подключение и описание) Датчик цвета (Color Sensor, подключение и описание). Датчик расстояния (Ultrasonic Sensor, подключение и описание)

- 5 Подготовка проекта (2 ч.)
- 6 Защита проекта (2 ч.)

II год обучения

1. Робототехника как прикладная наука. Rotrics DexArm (28ч)

Способы и области перемещения роботов. Робототехника - техническая основой развития производства. Развитие образовательной робототехники. Цели и задачи курса. Техника безопасности. Rotrics DexArm – робот-манипулятор, 3D-принтер, лазерный гравер и ручка для рисования. Возможности . Rotrics DexArm. Рисование объектов манипулятором. Выполнение творческого проекта, выжигание картины. Программирование движений. Сборка модуля 3D печати. Сборка вакуумного захвата. Сборка мягкого захвата. Управление захватом.

2. Основы микроэлектроники (4 ч.)

Программирование устройств Arduino на языке Python. Датчик касания, датчик звука, датчик освещенности, датчик расстояния

3. Подготовка, защита проекта. (4 ч)

1.4. Планируемые результаты

Концепция курса предполагает внедрение инноваций в дополнительное техническое образование учащихся. Поэтому основными планируемыми результатами курса являются:

- -развитие интереса учащихся к робототехнике, программированию;
- -развитие навыков управления роботами и конструирования автоматизированных систем;
- -получение опыта коллективного общения при конструировании.

В результате обучения учащиеся будут

ЗНАТЬ:

- -правила безопасной работы;
- -основные компоненты Rotrics DexArm;
- -конструктивные особенности различных модулей и механизмов;
- -компьютерную среду, включающую в себя графический язык программирования;
- -виды подвижных и неподвижных соединений; основные приемы управления роботом;
- -как передавать программы;
- -как использовать созданные программы;
- -самостоятельно решать технические задачи в процессе управления роботом (планирование предстоящих действий, самоконтроль, применять полученные знания, приемы и опыт управления с использованием специальных элементов, и других объектов и т.д.);
- -блочные программы на компьютере для различных роботов;
- -корректировать программы при необходимости;
- -демонстрировать технические возможности роботов;

УМЕТЬ:

- -работать с литературой, с журналами, с каталогами, в интернете(изучать и обрабатывать информацию);
- -создавать действующие модели управления робота на основе Rotrics DexArm;
- -передавать (загружать) программы;
- -корректировать программы при необходимости;
- -демонстрировать технические возможности робота.

Раздел II. Организационно-педагогические условия.

2.1. Календарный учебный график, 2023 - 2024 I год обучения

No	месяц	число	время	форма	тема занятия	кол-во	место	форма
п\п			проведен	занятий		часов	проведения	контроля
			ия					
			занятий					
1-2	сентябрь	08, 15	16.00-	беседа	Введение. Что такое робот?	2	учебный	фронтальный
			16.40				кабинет	опрос
3	сентябрь	22	16.00-	беседа	Робот Rotrics DexArm – робот-	1	учебный	фронтальный
			16.40		манипулятор,.		кабинет	опрос
4	сентябрь	29	16.00-	беседа	3D-принтер,лазерный гравер и ручка для	1	учебный	фронтальный
			16.40		рисования		кабинет	опрос
5	октябрь	06	16.00-	мастер-	Rotrics DexArm.	1	учебный	фронтальный
			16.40	класс			кабинет	опрос
6	октябрь	13	16.00-	беседа	3D-принтер, Лазерный гравер.	1	учебный	фронтальный
			16.40				кабинет	опрос
7-8	октябрь	20,27	16.00-	практику	Управление манипулятором Rotrics	2	учебный	фронтальный
			16.40	M	DexArm с пульта		кабинет	опрос
9-10	ноябрь	03,10	16.00-	практику	Работа с Rotrics Studio.	2	учебный	зачет
			16.40	M			кабинет	
11-	ноябрь	17,24	16.00-	практику	Модуль «Держатель пера»	2	учебный	
12			16.40	M	_		кабинет	
13-	декабрь	01,08	16.00-	практику	Рисование объектов манипулятором	2	учебный	зачет

14			16.40	M			кабинет	
15-	декабрь	15,22	16.00-	практику	Модуль «Лазерная гравировка и резка»	<u>2</u>	учебный	
16	1		16.40	M		_	кабинет	
17-	декабрь	29	16.00-	практику	Лазерная гравировка изделий	<u>2</u>	учебный	зачет
18	январь	12	16.40	M			кабинет	
19-	январь	19,27	16.00-	практику	Программирование в блочной среде	2	учебный	фронтальный
20			16.40	M			кабинет	опрос
21-	февраль	02,09	16.00-	практику	Программирование движений в среде	<u>2</u>	учебный	фронтальный
22			16.40	M	Rotrics Studio		кабинет	опрос
23-	февраль	16,23	16.00-	практику	Робот помогает читать книгу или циклы в	<u>2</u>	учебный	фронтальный
24			16.40	M	Rotrics Studio		кабинет	опрос
25-	март	01,15	16.00-	практику	Программирование движений в среде	<u>2</u>	учебный	
26			16.40	M	Rotrics Studio . Выбор проекта		кабинет	
27-	март	22,29	16.00-	практику	Программирование движений в среде	<u>2</u>	учебный	
28			16.40	M	Rotrics Studio . Работа над проектом.		кабинет	
29-	апрель	05,12	16.00-	мастер-	Основы микроэлектроники. Знакомство с	<u>2</u>	учебный	фронтальный
30			16.40	класс	устройствами Arduino		кабинет	опрос
31-	апрель	19,26	16.00-	мастер-	Датчики. Машинное зрение для робота.	<u>2</u>	учебный	зачет
32			16.40	класс			кабинет	
33-	май	03,10	16.00-	практику	Программирование движений в среде	<u>2</u>	учебный	
34			16.40	M	Blockly. Работа над проектом.		кабинет	
35-	май	17,24	16.00-	выставка,	Защита проекта	<u>2</u>	учебный	защита проекта
36			16.40	защита			кабинет	
				ИП				
					II год обучения			
1-2				беседа	Rotrics DexArm робот манипулятор, 3D-	<u>2</u>	учебный	фронтальный
					принтер, лазерный гравер и ручка для		кабинет	опрос
					рисования. Техника безопасности.			
3-4				мастер-	3D-принтер, Модуль захвата. Примеры	<u>2</u>	учебный	фронтальный
				класс	использования.		кабинет	опрос
5-6				практику	Rotrics DexArm . Моделирование	<u>2</u>	учебный	
				M	производственных линий. Современное		кабинет	

		производство.			
7-8	практику	Модуль линейных перемещений для	<u>2</u>	учебный	
	M	Rotrics DexArm		кабинет	
9-10	практику	Конвейерная лента для Rotrics DexArm	<u>2</u>	учебный	
	M			кабинет	
11-	практику	Рисование объектов манипулятором	<u>2</u>	учебный	зачет
12	M			кабинет	
13-	практику	Лазерная гравировка изделий. Режим	<u>2</u>	учебный	зачет
14	M	обучения.		кабинет	
15-	практику	Программирование движений.	<u>2</u>	учебный	зачет
16	M			кабинет	
17-	практику	Выжигание на металле.	<u>2</u>	учебный	фронтальный
18	M			кабинет	опрос
19-	практику	Сборка модуля 3D печати.	<u>2</u>	учебный	зачет
20	M			кабинет	
21-	практику	Запуск 3D – печати с помощью Rotrics	<u>2</u>	учебный	зачет
22	M	Studio.		кабинет	
23-	практику	Запуск 3D – печати с помощью	<u>2</u>	учебный	фронтальный
24	M	сенсорного пульта управления		кабинет	опрос
25-	практику	Сборка вакуумного захвата. Сборка	<u>2</u>	учебный	зачет
26	M	мягкого захвата.		кабинет	
27-	практику	Управление захватом.	<u>2</u>	учебный	
28	M			кабинет	
29-	мастер-	Основы микроэлектроники.	<u>2</u>	учебный	фронтальный
30	класс	Использование устройств Arduino в	_	кабинет	опрос
		программировании движения.			-
31-	мастер-	Датчики. Машинное зрение для робота.	<u>2</u>	учебный	
32	класс			кабинет	
33-	практику	Программирование движений в	<u>2</u>	учебный	
34	M	среде Scratch. Работа над		кабинет	
		проектом.			

35-			выставка,	Защита проекта	<u>2</u>	учебный	защита проекта
36			защита			кабинет	
]	ИП				

2.2. Условия реализации программы

Для организации деятельности на занятиях используются разнообразные методы обучения. Выбор методов организации учебновоспитательного процесса зависит от поставленной цели.

Для более эффективной реализации учебно-воспитательных задач используются предметы, их модели, словесные, образные заменители, которыми учитель воздействует на зрение, слух и осязание (плакаты, интерактивная доска, проектор, аудио - визуальная техника, технологические карты, электронные образовательные ресурсы).

Материально-техническое обеспечение:

- Учебный кабинет физики, 1 ноутбук;
- Rotrics Dex Arm робот манипулятор. Сменные модули. Устройства Arduino.
- Проектор.
- Интерактивная доска

Информационное обеспечение:

https://drive.google.com/drive/folders/1UYPbyycbNKBY-5e-SVG2VfQ-J4fJu2Pk

2.3. Формы контроля

Формами контроля деятельности по данной программе являются

- участие детей в проектной деятельности;
- участие в выставках;
- творческие конкурсы;

Текущая диагностика результатов обучения осуществляется систематическим наблюдением педагога за практической, творческой и поисковой работой детей.

В процессе обучения детей по данной программе отслеживаются три вида результатов:

- текущие (цель выявление ошибок и успехов в работах обучающихся в течение всего учебного года);
- промежуточные (проверяется уровень освоения детьми программы за полугодие);
- итоговые (определяется уровень освоения всей программы).

2.4. Оценочные материалы

Способы оценивания достижений учащихся

Освоение данной программы не предполагает промежуточной или итоговой аттестации учащихся. В процессе обучения учащиеся получают знания и опыт в области дополнительной дисциплины «Робототехника. Робот-манипулятор».

Оценивание уровня освоения происходит по завершении, после выполнения и защиты индивидуальных проектов. Тем самым они формируют свое портфолио, готовятся к выбору своей последующей профессии формируют свою политехническую базу.

2.5. Методические материалы

Формы проведения занятий:

- Урок лекция;
- Урок презентация;
- Практическое занятие;
- Урок соревнование;
- Выставка
- Защита проекта

Основные методы обучения:

- Познавательный (восприятие, осмысление и запоминание учащимися нового материала с привлечением наблюдения готовых примеров, моделирования, изучения иллюстраций, восприятия, анализа и обобщения демонстрируемых материалов);
 - Метод проектов (при усвоении и творческом применении навыков и умений в процессе разработки собственных моделей)
 - Систематизирующий (беседа по теме, составление систематизирующих таблиц, графиков, схем и т.д.)
- *Контрольный метод* (при выявлении качества усвоения знаний, навыков и умений и их коррекция в процессе выполнения практических заданий)
 - Групповая работа (используется при совместной разработке проектов)

Литература для педагога

- 1. Кружок робототехники, [электронный ресурс]//http://lego.rkc-74.ru/index.php/-lego-
- 2. В.А. Козлова, Робототехника в образовании [электронный ресурс]//http://lego.rkc-74.ru/index.php/2009-04-03-08-35-17.
- 3. «Информационные технологии и моделирование бизнес-процессов» Томашевский ОМ
- 4. «Хронология робототехники» http://www.myrobot.ru/articles/hist.php
- 5. «Занимательная робототехника» http://edurobots.ru

6. Многофункциональный робот Rotrics DexArm: Учебно-методическое пособие. – М.: ИНТ. – 40с.

Литература для детей и родителей

- 1. Книга «Первый шаг в робототехнику», Д.Г. Копосов.
- 2. Руководство «ПервоРобот. Введение в робототехнику»
- 3. Интернет ресурс http://wikirobokomp.ru. Сообщество увлеченных робототехникой.
- 4. Интернет pecypc http://www.mindstorms.su. Техническаяподдержка для роботов.
- 5. Интернет ресурс http://www.nxtprograms.com. Современные модели роботов.
- 6. Интернет ресурс http://www.prorobot.ru. Курсы робототехники и LEGO-конструирования в школе.
- 7. Витезслав Гоушка «Дайте мне точку опоры...», «Альбатрос», Изд-во литературы для детей и юношества, Прага, 2019. 191 с.
- 8. Наука. Энциклопедия. М., «РОСМЭН», 2019. 125 с.
- 9. Энциклопедический словарь юного техника. М., «Педагогика», 2018. 463 с.